Mathematical Scratchpad

1  Double Integral Example Worksheet

1.0.1  Double Integrals over general regions in x,y coordinates

Sketch regions too  

  1. ò04ò04-x xy dy dx

    Inner: ò04-x xy dy=\allowbreak [ 1/2]xy2| y=04-x=[ 1/2]x( -4+x) 2

    Completion: ò04[ 1/2]x( -4+x) 2dx=[ 1/2]ò04( x3-8x2+16x)  dx=\allowbreak [ 32/3]

  2. \iintD( x+y)  dA  where D is the triangle with vertices ( 0,0) ,( 0,2) ,( 1,2)

    ò01òy=2x2( x+y) dydx=ò02ò0[ 1/2]y( x+y) dxdy=[ 5/3].

  3. \iintD48xy  dA   where D is the region bounded by y=x3  and y=Öx

    ò01òy=x3Öx( 48xy)  dy dx=\allowbreakò01òx=y2y[ 1/3]( 48xy) dx dy=\allowbreak 5

Reverse order of integration.  

  1. ò01òx2xey-x  dy dx=òy=01òx=[ 1/2]yyey-x dx dy+ò12ò[ 1/2]y1ey-x dx dy
  2. ò02Ö3òy2/6Ö{16-y2}1  dx dy=ò02ò0Ö{6x}1 dy dx+ò24ò0Ö{16-x2}1 dy dx=\allowbreak [ 2/3]Ö3+[ 8/3]p
  3. ò07òx2-6xx f( x,y)  dy  dx=ò-90ò3-Ö{y+9}3+Ö{y+9}f( x,y) dx dy+ò07òy3+Ö{y+9}f( x,y)  dx dy
  4. ò12òxx3 f( x,y) dy dx+ò28òx8 f( x,y) dy dx=ò18òy[ 1/3]yf( x,y)  dx dy

Find Volume of solid  

  1. Tetrahedron in first octant bounded by coordinate planes and z=7-3x-2y.

    ò0[ 7/3]ò0-[ 3/2]x+[ 7/2](7-3x-2y)  dy dx=ò0[ 7/3]ò07-3x( [(7-3x-z)/2])  dz dx=ò0[ 7/2]ò07-2y( [(7-2y-z)/3])  dz dy=\allowbreak [ 343/36]

  2. Solid inside both the sphere x2+y2+z2=3  and paraboloid 2z=x2+y2.

    ò-Ö2Ö2ò-Ö{2-x2}Ö{2-x2}( Ö{3-x2-y2}-[(x2+y2)/2])  dy dx=\allowbreak 2Ö3p-[ 5/3]p

1.0.2  Double Integrals using polar coordinates

Direct Computations in polar coordinates  

  1. Compute ò0p/2ò13  re-r2 dr dq

    Inner: ò13  re-r2 dr=\allowbreak -[ 1/2]e-9+[ 1/2]e-1  Using u=-r2  and du=-2r dr

    Completion: ò0p/2ò13  re-r2 dr dq = \allowbreak -[ 1/4]e-9p+[ 1/4]e-1p

  2. FInd the area bounded by the cardioid  r=1+sinq

    \diintD1 dA=ò02pò01+sin( q) 1 r dr dq = \allowbreak [ 3/2]p

  3. Find the area bounded by one leaf of the rose r=4cosq

    \diintD1 dA=ò0pò04cos( q)1 r dr dq = \allowbreak 4p

  4. Find area inside both  r=1  and r=2sinq.

    \diintD1 dA=2( ò0[(p)/6]ò02sin( q) 1 r dr dq+ò[(p)/6][(p)/2]ò011 r dr dq) = \allowbreak [ 2/3]p-[ 1/2]Ö3

Convert from Cartesian ( x,y) to polar coordinates before integrating  

  1. Find \iintDf( x,y)  dA  where D  is the region bounded by the x-axis, the line y=x and the circle x2+y2=1.

    \iintDf( x,y)   dA=ò0[(p)/4]ò01f( rcos( q) ,rsin( q) )  r dr dq

  2. Find the volume of the solid bounded by the paraboloid z=4-x2-y2  and the xy-plane.

    V=ò-22ò-Ö{4-x2}Ö{4-x2}(4-x2-y2)  dy dx=ò02pò02(4-r2)  r dr dq = \allowbreak 8p

  3. Find the volume inside the sphere x2+y2+z2=25 and outside the cylinder x2+y2=9.

    V=\diintD( Ö{25-x2-y2}-0) dA=2ò02pò35Ö{25-r2} r dr dq = \allowbreak [ 256/3]p

  4. Find the volume inside the sphere x2+y2+z2=25 and outside the cylinder ( x-1) 2+y2=1.

    [This is a project problem but a hint is to write the equation of the cylinder in polar coordinates.]




File translated from TEX by TTH, version 3.04.
On 13 Apr 2004, 15:05.